Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
(e^(x^A)) * Ax^(A-1) --------------- |
|
|
Term
(ln sqrt(x+A))'= ----------------- |
|
Definition
|
|
Term
How Do You Solve The Following: (-Ae^((Bx^C)+D))' ---------------- |
|
Definition
Take the Derivative of: (Bx^C)+D) Which Is CBx^C-1 ---------- Multiply the Derivative of (Bx^C)+D) by -A Which is -A(CBx^C-1) ---------------- Multiply the previous solution by e^((Bx^C)+D) Which gives you... -A(CBx^C-1)e^((Bx^C)+D) ----------------- |
|
|
Term
ln((-Ax^B)+Cx)' = ---------------- |
|
Definition
((-BAx^B-1)+C)/((-Ax^B)+Cx) ---------------------------- |
|
|
Term
(ln [(Ax−B)((Cx^D)+E)])' ------------------------- |
|
Definition
(A/(Ax-B))+((DCx^D-1)/((Cx^D)+E)) ------------------- |
|
|
Term
((x^B)(e^(-Cx))' = ------------------- |
|
Definition
e^(-Cx)((-Cx^B)+(Bx^B-1)) ------------- |
|
|
Term
|
Definition
|
|
Term
((x^A)ln|x|)'= ----------------- |
|
Definition
(x^(A-1))(1+Aln|x|) ------------------ |
|
|
Term
(sqrt(lnAx))'= -------------- |
|
Definition
1/2x(sqrt(lnAx)) -------------- |
|
|
Term
(((e^x)-A)/(ln|x|))'= ----------------- |
|
Definition
((xe^x)ln|x|-(e^x)+A)/(x(ln|x|)^2) ----------------- |
|
|
Term
(((e^Ax)-(e^-Ax))/x)'= ------------------------- |
|
Definition
(Ax((e^Ax)-(e^-Ax))-((e^Ax)+(e^-Ax)))/(x)^2 ------------------- |
|
|
Term
((ex^Ax+B)ln(Cx-D))'= ------------------- |
|
Definition
((Ce^Ax+B)/(Cx-D))+(Ae^Ax+B)ln(Cx-D) --------------------- |
|
|
Term
(ln(ln|Ax|))'= ----------------- |
|
Definition
|
|