Shared Flashcard Set

Details

1-Section 11.8: Calculus
1-Section 11.8: Calculus
15
Mathematics
Undergraduate 1
09/26/2016

Additional Mathematics Flashcards

 


 

Cards

Term
e^(-Ax)'=
---------------
Definition
-Ae^(-Ax)
-------------
Term
Ae^(Bx)'=
---------
Definition
BAe^(Bx)
------------
Term
(e^(x^A))'=
------------
Definition
(e^(x^A)) * Ax^(A-1)
---------------
Term
(ln sqrt(x+A))'=
-----------------
Definition
1/2(x+A)
--------
Term
How Do You Solve The Following:
(-Ae^((Bx^C)+D))'
----------------
Definition
Take the Derivative of:
(Bx^C)+D)
Which Is
CBx^C-1
----------
Multiply the Derivative of (Bx^C)+D)
by -A
Which is
-A(CBx^C-1)
----------------
Multiply the previous solution by
e^((Bx^C)+D)
Which gives you...
-A(CBx^C-1)e^((Bx^C)+D)
-----------------
Term
ln((-Ax^B)+Cx)' =
----------------
Definition
((-BAx^B-1)+C)/((-Ax^B)+Cx)
----------------------------
Term
(ln​ [(Ax−B​)((Cx^D)+E​)])'
-------------------------
Definition
(A/(Ax-B))+((DCx^D-1)/((Cx^D)+E​))
-------------------
Term
((x^B)(e^(-Cx))' =
-------------------
Definition
e^(-Cx)((-Cx^B)+(Bx^B-1))
-------------
Term
Ae^(B)'=
--------------
Definition
BAe^(B)
------------
Term
((x^A)ln|x|)'=
-----------------
Definition
(x^(A-1))(1+Aln|x|)
------------------
Term
(sqrt(lnAx))'=
--------------
Definition
1/2x(sqrt(lnAx))
--------------
Term
(((e^x)-A)/(ln|x|))'=
-----------------
Definition
((xe^x)ln|x|-(e^x)+A)/(x(ln|x|)^2)
-----------------
Term
(((e^Ax)-(e^-Ax))/x)'=
-------------------------
Definition
(Ax((e^Ax)-(e^-Ax))-((e^Ax)+(e^-Ax)))/(x)^2
-------------------
Term
((ex^Ax+B)ln(Cx-D))'=
-------------------
Definition
((Ce^Ax+B)/(Cx-D))+(Ae^Ax+B)ln(Cx-D)
---------------------
Term
(ln(ln|Ax|))'=
-----------------
Definition
(1/(xln|Ax|))
-----------
Supporting users have an ad free experience!