Term
What is the solution to the following equation? A^-|x| ---------- |
|
Definition
|
|
Term
What is the value of x? log(A)x=B -------------- |
|
Definition
|
|
Term
What is the solution to this problem? A^-B ----------- |
|
Definition
|
|
Term
What is the solution to this problem? 1/(A^-B) ----------- |
|
Definition
|
|
Term
What are the steps to solving this problem? (A^(Bx+C))=D |
|
Definition
1.)Take the Natural Log of Both Sides ln(A^(Bx+C))=lnD ------------ 2.)Use the Power Rule of Logarithms (Bx+C)lnA=lnD --------------- 3.)Use the Distributive Property BxlnA+ClnA=lnD ------------ 4.)Subtract ClnA from both sides BxlnA=lnD-ClnA ---------------- 5.)Divide both sides by BlnA x=(lnD-ClnA)/BlnA ------------ |
|
|
Term
What is the power rule of logarithms? -------------- |
|
Definition
|
|
Term
How do you solve this exponential equation? (A/(B-(C^x)))=D ------------- |
|
Definition
1.)Multiply both sides by (B-(C^x)) A=D(B-(C^x)) ---------- 2.)Distribute the D A=DB-(D*(C^x)) -------------- 3.)Subtract DB from both sides A-DB=-(D*(C^x)) ----------------- 4.)Divide both sides by -D (A-DB)/(-D)=(C^x) ------------------- 5.)Take the Natural Log of both sides ln(A-DB)/(-D)=ln(C^x) ---------------- 6.)Use the Power Rule ln(A-DB)/(-D)=xlnC ------------------ 7.)Divide both sides by lnC (ln(A-DB)/(-D))/lnC=x --------------------- 8.)Use the Quotient Property (ln(|A-DB|)-ln(|-D|))/lnC=x ------------------- |
|
|
Term
What is the solution to this logarithmic equation? log[[x^2]-Ax-B]=0 ----------------- |
|
Definition
1.)Use the Quadratic Function on: ((x^2)-Ax(-B-1)) ---------- 2.)Your solution set is the solution set ------------- |
|
|
Term
What is the solution to this logarithmic equation? log(A)[[x^2]-Bx+C]=1 ----------------- |
|
Definition
1.)Use the Quadratic Formula [[x^2]-Bx+[C-A]] ------ 2.)Your Solution Set is the Solution Set ------------- |
|
|
Term
How do you write the equation in its logarithm form? A^B=C ------------ |
|
Definition
|
|
Term
How do you convert this to an exponential equation? log(A)B=C ----------- |
|
Definition
|
|
Term
How do you solve the logarithmic equation? log(A)[x+B]-log(A)[x-C]=D ------------- |
|
Definition
1.)Apply Quotient Rule log(a)[x+B/x-C]=D --------- 2.)Convert into an Exponential Expression [x+B/x-C]=A^D -------------- 3.)Multiply both sides by x-C x+B=A^D(x-C) ---------------- 4.)Distribute x+B=(A^D*x)-(A^D*C) ------------- 5.)Subtract "x" from both sides B=((A^D*x)-x)-(A^D*C) -------------- 6.)Add (A^D*C) to both sides B+(A^D*C)=((A^D*x)-x) ------------------ 7.)Divide both sides by (B+(A^D*C)) (B+(A^D*C))/((A^D*x)-x) ------------------ |
|
|