Shared Flashcard Set

Details

2-Precalculus:Homework:4.4:Notes
2-Precalculus:Homework:4.4:Notes
12
Mathematics
Undergraduate 1
03/29/2016

Additional Mathematics Flashcards

 


 

Cards

Term
What is the solution to the following equation?
A^-|x|
----------
Definition
Empty Set
-----------
Term
What is the value of x?
log(A)x=B
--------------
Definition
A^B=x
----------
Term
What is the solution to this problem?
A^-B
-----------
Definition
1/(A^B)
---------
Term
What is the solution to this problem?
1/(A^-B)
-----------
Definition
A^B
---------
Term
What are the steps to solving this problem?
(A^(Bx+C))=D
Definition
1.)Take the Natural Log of Both Sides
ln(A^(Bx+C))=lnD
------------
2.)Use the Power Rule of Logarithms
(Bx+C)lnA=lnD
---------------
3.)Use the Distributive Property
BxlnA+ClnA=lnD
------------
4.)Subtract ClnA from both sides
BxlnA=lnD-ClnA
----------------
5.)Divide both sides by BlnA
x=(lnD-ClnA)/BlnA
------------
Term
What is the power rule of logarithms?
--------------
Definition
lnA^B=BlnA
--------
Term
How do you solve this exponential equation?
(A/(B-(C^x)))=D
-------------
Definition
1.)Multiply both sides by (B-(C^x))
A=D(B-(C^x))
----------
2.)Distribute the D
A=DB-(D*(C^x))
--------------
3.)Subtract DB from both sides
A-DB=-(D*(C^x))
-----------------
4.)Divide both sides by -D
(A-DB)/(-D)=(C^x)
-------------------
5.)Take the Natural Log of both sides
ln(A-DB)/(-D)=ln(C^x)
----------------
6.)Use the Power Rule
ln(A-DB)/(-D)=xlnC
------------------
7.)Divide both sides by lnC
(ln(A-DB)/(-D))/lnC=x
---------------------
8.)Use the Quotient Property
(ln(|A-DB|)-ln(|-D|))/lnC=x
-------------------
Term
What is the solution to this logarithmic equation?
log[[x^2]-Ax-B]=0
-----------------
Definition
1.)Use the Quadratic Function on:
((x^2)-Ax(-B-1))
----------
2.)Your solution set is the solution set
-------------
Term
What is the solution to this logarithmic equation?
log(A)[[x^2]-Bx+C]=1
-----------------
Definition
1.)Use the Quadratic Formula
[[x^2]-Bx+[C-A]]
------
2.)Your Solution Set is the Solution Set
-------------
Term
How do you write the equation in its logarithm form?
A^B=C
------------
Definition
log(A)C=B
Term
How do you convert this to an exponential equation?
log(A)B=C
-----------
Definition
A^C=B
---------
Term
How do you solve the logarithmic equation?
log(A)[x+B]-log(A)[x-C]=D
-------------
Definition
1.)Apply Quotient Rule
log(a)[x+B/x-C]=D
---------
2.)Convert into an Exponential Expression
[x+B/x-C]=A^D
--------------
3.)Multiply both sides by x-C
x+B=A^D(x-C)
----------------
4.)Distribute
x+B=(A^D*x)-(A^D*C)
-------------
5.)Subtract "x" from both sides
B=((A^D*x)-x)-(A^D*C)
--------------
6.)Add (A^D*C) to both sides
B+(A^D*C)=((A^D*x)-x)
------------------
7.)Divide both sides by (B+(A^D*C))
(B+(A^D*C))/((A^D*x)-x)
------------------
Supporting users have an ad free experience!