Term
|
Definition
xn = x · x · x · x ... x · x for n factors of x where n ε N and x ε R |
|
|
Term
|
Definition
If x ε R and x ≠ 0
x0 = 1 |
|
|
Term
Negative Integer Exponent |
|
Definition
If x ε R, x ≠0, and n ε N, then
x-n = 1 / xn |
|
|
Term
|
Definition
Given p ε R and n ε Z.
If (-p)n and n is even, then (-p)n = pn.
If (-p)n and n is odd, then (-p)n = -pn. |
|
|
Term
|
Definition
If m ε Z, n ε Z, x ε R, and y ε R then,
xmxn = xm+n
(xm)n = xmn
(xy)n = xnyn
(x/y)n = (xn/yn); y ≠ 0
(xm/xn) = xm - n; x ≠ 0 |
|
|
Term
Properties of Negative Exponents |
|
Definition
1. 1/x-n = xn/1
2. x-n/1 = 1/xn
3. (p/q)-n = (q/p)n; p ≠ 0; q ≠ 0 |
|
|