Term
Fundamental Theorem of Calculus |
|
Definition
int(f'(x)dx,x,a,b)=f(b)-f(a) |
|
|
Term
Second Fundamental Theorem of Calculus |
|
Definition
(d/dx)[int(f(t)dt,t,c,u)]=f(u)*u' |
|
|
Term
Average Value of f on [a,b] |
|
Definition
1/(b-a)*int(f(x)dx,x,a,b) |
|
|
Term
|
Definition
=f(x)*(x-x)+f(x)*(x-x)+... -rectangle length is always positive -if rectangle is above x-axis, height is positive -if height is below x-axis, height is negative |
|
|
Term
|
Definition
-Separate Variables -Integrate -Input coordinates -Find C -Find K (if necessary) -Solve for y |
|
|
Term
Trapezoid Rule w/ equal subintervals |
|
Definition
=(b-a)/(2*n)*[f(x)+2*f(x)+2(x)+...+2*f(x)+f(x)] |
|
|
Term
Trapezoid Rule w/ unequal subintervals |
|
Definition
1/(b-a)*[(f(x)+(f(x))/2*(x-x)+(f(x)+(f(x))/2*(x-x)+...] |
|
|
Term
|
Definition
Area=int(([top]-[bottom])dx,x,a,b) Area=int(([right]-[left])dx,x,a,b) |
|
|
Term
|
Definition
Volume=π*int(([top]^(2)-[bottom]^(2))dx,x,a,b) Volume=π*int(([right]^(2)-[left]^(2))dy,y,a,b) |
|
|
Term
|
Definition
Volume=int((area)dx,x,a,b) Volume=int((area)dy,y,a,b) |
|
|