Term
G3B01 -How might a sky-wave signal sound if it arrives at your receiver by both short path and long path propagation? A. Periodic fading approximately every 10 seconds B. Signal strength increased by 3 dB C. The signal might be cancelled causing severe attenuation D. A well-defined echo might be heard |
|
Definition
|
|
Term
G3B02 -Which of the following is a good indicator of the possibility of sky-wave propagation on the 6 meter band? A. Short skip sky-wave propagation on the 10 meter band B. Long skip sky-wave propagation on the 10 meter band C. Severe attenuation of signals on the 10 meter band D. Long delayed echoes on the 10 meter band |
|
Definition
|
|
Term
G3B03 -Which of the following applies when selecting a frequency for lowest attenuation when transmitting on HF? A. Select a frequency just below the MUF B. Select a frequency just above the LUF C. Select a frequency just below the critical frequency D. Select a frequency just above the critical frequency |
|
Definition
|
|
Term
G3B04 -What is a reliable way to determine if the Maximum Usable Frequency (MUF) is high enough to support skip propagation between your station and a distant location on frequencies between 14 and 30 MHz? A. Listen for signals from an international beacon B. Send a series of dots on the band and listen for echoes from your signal C. Check the strength of TV signals from Western Europe D. Check the strength of signals in the MF AM broadcast band |
|
Definition
|
|
Term
G3B05 -What usually happens to radio waves with frequencies below the Maximum Usable Frequency (MUF) and above the Lowest Usable Frequency (LUF) when they are sent into the ionosphere? A. They are bent back to the Earth B. They pass through the ionosphere C. They are amplified by interaction with the ionosphere D. They are bent and trapped in the ionosphere to circle the Earth |
|
Definition
|
|
Term
G3B06 -What usually happens to radio waves with frequencies below the Lowest Usable Frequency (LUF)? A. They are bent back to the Earth B. They pass through the ionosphere C. They are completely absorbed by the ionosphere D. They are bent and trapped in the ionosphere to circle the Earth |
|
Definition
|
|
Term
G3B07 -What does LUF stand for? A. The Lowest Usable Frequency for communications between two points B. The Longest Universal Function for communications between two points C. The Lowest Usable Frequency during a 24 hour period D. The Longest Universal Function during a 24 hour period |
|
Definition
|
|
Term
G3B08 -What does MUF stand for? A. The Minimum Usable Frequency for communications between two points B. The Maximum Usable Frequency for communications between two points C. The Minimum Usable Frequency during a 24 hour period D. The Maximum Usable Frequency during a 24 hour period |
|
Definition
|
|
Term
G3B09 -What is the approximate maximum distance along the Earth's surface that is normally covered in one hop using the F2 region? A. 180 miles B. 1,200 miles C. 2,500 miles D. 12,000 miles |
|
Definition
|
|
Term
G3B10 -What is the approximate maximum distance along the Earth's surface that is normally covered in one hop using the E region? A. 180 miles B. 1,200 miles C. 2,500 miles D. 12,000 miles |
|
Definition
|
|
Term
G3B11 -What happens to HF propagation when the Lowest Usable Frequency (LUF) exceeds the Maximum Usable Frequency (MUF)? A. No HF radio frequency will support ordinary skywave communications over the path B. HF communications over the path are enhanced C. Double hop propagation along the path is more common D. Propagation over the path on all HF frequencies is enhanced |
|
Definition
|
|
Term
G3B12 -What factors affect the Maximum Usable Frequency (MUF)? A. Path distance and location B. Time of day and season C. Solar radiation and ionospheric disturbances D. All of these choices are correct |
|
Definition
|
|