Term
|
Definition
Converges if R<1 Diverges if R>1 S = a/1-R |
|
|
Term
|
Definition
If lim of An does not exist or lim is not equal to zero then the series is divergent. |
|
|
Term
|
Definition
1/n^p Converges if p>1 diverges if p <= 1 |
|
|
Term
|
Definition
1/n harmonic series and diverges |
|
|
Term
|
Definition
1. Lim An/Bn = c>0 then both converge or diverge. 2. If lim An/Bn = 0 then if Bn converges, both converge 3. If lim An/Bn = inf. then if Bn diverge, both diverge. |
|
|
Term
|
Definition
An -> lim (An+1)/An = L 1. Converges if L<1 2. Diverges if L>1 or infinite 3. Inconclusive if L=1 |
|
|
Term
|
Definition
An > 0 for n>= N and lim sqrt of n(An)=p 1. Converges if p<1 2. Diverges if p>1 or infinite 3. Inconclusive if p=1 |
|
|
Term
|
Definition
cn(x-1)^n 1. Converges only when x=a 2. The series converges for all x 3. Converges if (x-a)R |
|
|