Shared Flashcard Set

Details

Introduction aux équations trigonométriques
Systèmes ayant une seule solution
48
Other
11th Grade
12/18/2019

Additional Other Flashcards

 


 

Cards

Term

cos α = 0

sin α = 1

α ∈ ]-π ; π]

Definition

α = π/2

Term

cos α = √2/2

sin α = √2/2

α ∈ ]-π ; π]

Definition

α = π/4

Term

cos α = 1/2

sin α = √3/2

α ∈ ]-π ; π]

Definition

α = π/3

Term

cos α = 1

sin α = 0

α ∈ ]-π ; π]

Definition

α = 0

Term

cos α =√3/2

sin α = 1/2

α ∈ ]-π ; π]

Definition

α = π/6

Term

cos α = 0

sin α = -1

α ∈ ]-π ; π]

Definition

α = -π/2

Term

cos α = √2/2

sin α = -√2/2

α ∈ ]-π ; π]

Definition

α = -π/4

Term

cos α = 1/2

sin α = -√3/2

α ∈ ]-π ; π]

Definition

α = -π/3

Term

cos α = √3/2

sin α = -1/2

α ∈ ]-π ; π]

Definition

α = -π/6

Term

cos α = -√2/2

sin α = √2/2

α ∈ ]-π ; π]

Definition

α = 3π/4

Term

cos α = -1/2

sin α = √3/2

α ∈ ]-π ; π]

Definition

α = 2π/3

Term

cos α = -1

sin α = 0

α ∈ ]-π ; π]

Definition

α = π

Term

cos α = -√3/2

sin α = 1/2

α ∈ ]-π ; π]

Definition

α = 5π/6

Term

cos α = -√2/2

sin α = -√2/2

α ∈ ]-π ; π]

Definition

α = -3π/4

Term

cos α = -1/2

sin α = -√3/2

α ∈ ]-π ; π]

Definition

α = -2π/3

Term

cos α = -√3/2

sin α = -1/2

α ∈ ]-π ; π]

Definition

α = -5π/6

Term

cos α = 0

sin α = 1

α ∈ ]0 ; 2π]

Definition

α = π/2

Term

cos α = √2/2

sin α = √2/2

α ∈ ]0 ; 2π]

Definition

α = π/4

Term

cos α = 1/2

sin α = √3/2

α ∈ ]0 ; 2π]

Definition

α = π/3

Term

cos α = 1

sin α = 0

α ∈ ]0 ; 2π]

Definition

α = 2π

Term

cos α =√3/2

sin α = 1/2

α ∈ ]0 ; 2π]

Definition

α = π/6

Term

cos α = 0

sin α = -1

α ∈ ]0 ; 2π]

Definition

α = 3π/2

Term

cos α = √2/2

sin α = -√2/2

α ∈ ]0 ; 2π]

Definition

α = 7π/4

Term

cos α = 1/2

sin α = -√3/2

α ∈ ]0 ; 2π]

Definition

α = 5π/3

Term

cos α = √3/2

sin α = -1/2

α ∈ ]0 ; 2π]

Definition

α = 11π/6

Term

cos α = -√2/2

sin α = √2/2

α ∈ ]0 ; 2π]

Definition

α = 3π/4

Term

cos α = -1/2

sin α = √3/2

α ∈ ]0 ; 2π]

Definition

α = 2π/3

Term

cos α = -1

sin α = 0

α ∈ ]0 ; 2π]

Definition

α = π

Term

cos α = -√3/2

sin α = 1/2

α ∈ ]0 ; 2π]

Definition

α = 5π/6

Term

cos α = -√2/2

sin α = -√2/2

α ∈ ]0 ; 2π]

Definition

α = 5π/4

Term

cos α = -1/2

sin α = -√3/2

α ∈ ]0 ; 2π]

Definition

α = 4π/3

Term

cos α = -√3/2

sin α = -1/2

α ∈ ]0 ; 2π]

Definition

α = 7π/6

Term

cos α = 0

sin α = 1

α ∈ ]π ; 3π]

Definition

α = 5π/2

Term

cos α = √2/2

sin α = √2/2

α ∈ ]2π ; 4π]

Definition

α = 9π/4

Term

cos α = 1/2

sin α = √3/2

α ∈ ]π ; 3π]

Definition

α = 7π/3

Term

cos α = 1

sin α = 0

α ∈ ]π ; 3π]

Definition

α = 2π

Term

cos α =√3/2

sin α = 1/2

α ∈ ]π ; 3π]

Definition

α = 13π/6

Term

cos α = 0

sin α = -1

α ∈ ]π ; 3π]

Definition

α = 3π/2

Term

cos α = √2/2

sin α = -√2/2

α ∈ ]π ; 3π]

Definition

α = 7π/4

Term

cos α = 1/2

sin α = -√3/2

α ∈ ]π ; 3π]

Definition

α = 5π/3

Term

cos α = √3/2

sin α = -1/2

α ∈ ]π ; 3π]

Definition

α = 11π/6

Term

cos α = -√2/2

sin α = √2/2

α ∈ ]π ; 3π]

Definition

α = 11π/4

Term

cos α = -1/2

sin α = √3/2

α ∈ ]π ; 3π]

Definition

α = 8π/3

Term

cos α = -1

sin α = 0

α ∈ ]π ; 3π]

Definition

α = 3π

Term

cos α = -√3/2

sin α = 1/2

α ∈ ]π ; 3π]

Definition

α = 17π/6

Term

cos α = -√2/2

sin α = -√2/2

α ∈ ]π ; 3π]

Definition

α = 5π/4

Term

cos α = -1/2

sin α = -√3/2

α ∈ ]π ; 3π]

Definition

α = 4π/3

Term

cos α = -√3/2

sin α = -1/2

α ∈ ]π ; 3π]

Definition

α = 7π/6

Supporting users have an ad free experience!